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The two-way coupling mechanisms in particle-laden mixing layers are investigated,
with and without particle settling, and with an emphasis on the resulting modifications
to the fluid vorticity field. The governing equations are interpreted with respect to
the production and cancellation of vorticity. These mechanisms are shown to be
related to the misalignment of the concentration gradient and the slip velocity, as
well as to the difference in fluid and particle vorticities. Preliminary insight into the
physics is obtained from an analysis of the unidirectional base flow. For this model
problem, the conditions are established under which the particle velocity remains
a single-valued function of space for all times. The resulting simplified set of two-
way-coupled equations governing the vorticity of the fluid and particulate phases,
respectively, is solved numerically. The formation of a decaying travelling wave
solution is demonstrated over a wide range of parameters. Interestingly, the downward
propagation of the fluid vorticity field is not accomplished through convection, but
rather by the production and loss of vorticity on opposite sides of the mixing layer.
For moderate settling velocities, the simulation results reveal an optimal coupling
mechanism between the fluid and particle vorticities at intermediate values of the
mass loading parameter. For large settling velocities and intermediate mass loadings,
more than one local maximum is seen to evolve in the vorticity field. A scaling law
for the downward propagation rates of the vorticity fronts is derived.

Two-dimensional particle-laden mixing layers are investigated by means of a mixed
Lagrangian–Eulerian approach which is based on the vorticity variable. For uniformly
seeded mixing layers, the simulations confirm some of the features observed by
Druzhinin (1995b) for the model problem of a two-way-coupled particle-laden Stuart
vortex, as well as by Dimas & Kiger (1998) in a linear stability analysis. For small
values of the Stokes number, a mild destabilization of the mixing layer is observed.
At moderate and large Stokes numbers, on the other hand, the transport of vorticity
from the braids into the core of the evolving Kelvin–Helmholtz vortices is seen to
be slowed by the two-way coupling effects. As a result, the particle ejection from the
vortex cores is weakened. For constant mass loadings, the two-way coupling effects
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are strongest at intermediate Stokes number values. For moderately large Stokes
numbers, the formation of two bands of high particle concentration is observed in
the braids, which reflects the multi-valued nature of the particle velocity field. For
mixing layers in which only one stream is seeded, the particle concentration gradient
across the mixing layer leads to strong vorticity production and loss, which results
in an effective net motion of the vortex in the flow direction of the seeded stream.
Under particle settling, the vortex propagates downward as well. For the parameter
range explored here, its settling velocity agrees well with the scaling law derived from
the unidirectional flow analysis.

1. Introduction
Over the last decade, much insight into the evolution of particle-laden flows has

been gained on the basis of one-way-coupled numerical simulations, which are based
on formulations of the governing equations in which the fluid flow is not affected
by the particle motion. As an example, numerous investigations of this kind for
transitional free shear flows have shed light on the mechanisms that result in the
preferential dispersion of particles whose aerodynamic response time is comparable
to the characteristic time scale of the flow (Crowe, Gore & Troutt 1985; Chein &
Chung 1988; Chung & Troutt 1988; Aggarwal & Xiao 1994; Uthuppan et al. 1994;
Martin & Meiburg 1994; Raju & Meiburg 1995; Marcu & Meiburg 1996a; Ling et
al. 1998; Soteriou & Yang 1999). Additional detailed studies have addressed such
issues as particle accumulation due to inertial effects and during settling, as well as the
formation of concentration waves in simplified models of particle-laden flows (Maxey
1987, 1990; Ganan-Calvo & Lasheras 1991; Tio et al. 1993b; Tio, Ganan-Calvo &
Lasheras 1993a; Druzhinin 1994, 1995a, 1997; Marcu, Meiburg & Newton 1995;
Marcu, Meiburg & Raju 1996; Marcu & Meiburg 1996b; Raju & Meiburg 1997).
Statistical aspects of particle dispersion by fully turbulent flows have been the focus
of several numerical investigations as well (Wang & Maxey 1993; Reeks 1991, 1992;
Hyland, McKee & Reeks 1999; Elghobashi & Truesdell 1992).

As the mass loading of the particle phase increases, it can substantially alter the
evolution of the fluid flow, so that an approach based on one-way coupling only is
no longer appropriate. The effects of two-way coupling on the statistical properties
of both isotropic and homogenous turbulence have been addressed in the numerical
simulations of several authors (Squires & Eaton 1990; Elghobashi & Truesdell 1993;
Truesdell & Elghobashi 1994; Maxey et al. 1997; Sundaram & Collins 1999), while
other investigators have focused on the modification of wall turbulence (Pan &
Banerjee 1996) and fully developed channel flows (Kulick, Fessler & Eaton 1994)
by heavy particles. However, very little numerical work has been done regarding the
effects of particle loading on the nonlinear stages of transitional free shear flows.
Hence, a detailed understanding of the mechanisms by which the particulate phase
affects the underlying vorticity dynamics of such flow fields has not yet been achieved,
which renders the design of strategies for their optimization and control difficult.
However, some preliminary insight can be gained from investigations of two-way-
coupled model problems. Along these lines, Druzhinin (1995b) conducts an analysis
of two-way coupling effects in several simplified flow fields such as free stagnation
points, as well as constant vorticity and Stuart vortices, in order to obtain improved
physical insight. By using a small Stokes number expansion, he makes the interesting
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observation that two-way coupling effects lead to a reduction in the vorticity near
vortex centres, while the strain is enhanced at hyperbolic free stagnation points.
Qualitative modifications of the vorticity field by solid particles were furthermore
observed by Park, Aggarwal & Katta (1996), as well as by Ory, Joia & Perkins (1998)
for more complex flow fields.

In contrast to the nonlinear stages, the question of how the linear stability of shear
flows is affected by a particulate phase has been the subject of several theoretical
studies. An early analytical investigation of steady laminar flow involving two-way
coupling effects was carried out by Saffman (1961). He observes fine particles, with a
fairly small relaxation time relative to the characteristic time scale of the fluid flow,
to destabilize the fluid motion. Conversely, coarser particles, with a greater relaxation
time, act in a stabilizing fashion. In his analysis, the particle concentration is assumed
to be constant everywhere in the flow field. Chen & Chung (1995) confirm these
findings for oscillatory two-phase channel flow by numerically solving a linearized
stability equation in the limit of very small particles. The stability of two-way-coupled
particle-laden mixing layers was first addressed by Yang et al. (1990). Their linear
stability analysis, which neglects the particle response to flow fluctuations, reveals the
stabilizing effect of particles on the spatial and temporal instabilities of a tanh shear
layer. Wen & Evans (1994) focus on the effects of differential particle loading on the
stability of the mixing layer. Assuming unresponsive particles, their linear stability
analysis shows two coexisting unstable modes, one of which is the Kelvin–Helmholtz
mode. The second mode is found to be similar to the Holmboe instability observed
in density-stratified flows, cf. the work by Lawrence, Browand & Redekopp (1991).
Very recently, Dimas & Kiger (1998) extended the above linear stability analyses by
retaining particle dynamics. Their detailed investigation focuses on the impact of the
particle Stokes number and the mass loading, and they observe that an increase in
either one of these parameters decreases the growth rate of the instability. Under
certain conditions, they find the appearance of a second, low-frequency instability
mode in addition to the fundamental mode. Their results show the velocity, particle
concentration, and vorticity fields to be strongly coupled.

It needs to be pointed out that several experimental investigations as well have ad-
dressed specifically the effects of particle feedback on the flow. For a particle-laden free
jet, Fleckhaus, Hishida & Maeda (1987) show that a fairly low mass loading of 30%
has a considerable effect on the properties of the jet. Their laser velocimetry experi-
ments indicate that the centreline air velocity declines at a rate somewhat lower than
that of the corresponding single-phase jet. Kiger & Lasheras (1995) analyse the kinetic
energy transfer between the two phases in a droplet-laden mixing layer. The same
authors (Kiger & Lasheras 1997) find that the dissipation in a two-phase turbulent
mixing layer increases due to the particles’ presence. To our knowledge, experimental
data on the effects of the particulate phase on the growth rate and/or phase velocity
of the Kelvin–Helmholtz instability in a mixing layer are not at present available.

Efforts to obtain a deeper understanding of the two-way coupling mechanisms that
dominate the nonlinear stages of transitional flows require accurate numerical simu-
lations that properly account for the underlying physics. Towards this end, over the
last two decades several computational approaches have been developed for the mod-
elling of two-way coupling effects in relatively dilute two-phase flows. In his review of
flows with a moderate mass loading, Sirignano (1993) lucidly describes how one can
base such investigations on two-continua formulations, Lagrangian discrete particle
approaches, and probabilistic descriptions. He furthermore discusses various consid-
erations that, for a given application, may render one of these approaches preferable
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to the others. A detailed and thorough overview of the continuum formulations is
provided by Drew (1983). However, for investigations of some of the fundamental
physics of particle-laden two-phase flows, in recent years the preferred computational
approach appears to have been Lagrangian in nature, cf. also the recent review of
numerical models by Crowe, Troutt & Chung (1996). Such simulations typically track
many discrete particles individually on the basis of an equation that balances the var-
ious forces acting on each of the particles. Since these particles do not interact which
each other, they are usually allowed to overlap spatially. Of interest with regard to
the numerical aspects of the present investigation is the advantage of the Lagrangian
approach that it does not require the particle velocity to be a single-valued function
of space. In other words, particles that occupy the same spatial volume element are
not required to have the same velocity values. The assumption of single-valuedness
is usually made implicitly when continuum approaches are employed that discretize
the physical space only. However, the effects of particle inertia in general prevent the
particle velocity from being such a single-valued function of space, except for very
small values of the Stokes number. In the literature, this is sometimes referred to
as the ‘crossing trajectories effect’, which is a somewhat misleading term, as particle
trajectories can cross even for single-valued particle velocities, as long as the problem
is unsteady in nature. Strictly speaking, if inertial effects are significant, a continuum
equation for the particle concentration in physical space has to be formulated based
on the particle distribution function in phase space, cf. for example the spray equation
discussed in detail by Williams (1985). This approach is referred to as the probabilistic
formulation by Sirignano (1993). However, simulations that require the discretization
of the phase space are exceedingly expensive computationally due to the increased
dimensionality of the problem, so that this approach in the past has not been con-
sidered practical for simulating multidimensional flow fields. As a result, phase-space
dynamics have mainly been considered in order to derive lower-dimensional models
suitable for the physical space.

In the present investigation, we will examine more closely the conditions under
which the particle velocity field in the unidirectional base flow of a mixing layer
remains single-valued. The equations governing the two-way-coupled fluid and particle
motion under these circumstances will be derived, and numerical solutions for a variety
of parameter combinations will be presented, in order to gain further insight into
the two-way coupling effects. Subsequently, the focus will be on the computational
simulation of nonlinearly evolving, two-dimensional two-way-coupled mixing layers.
As we will see, for larger values of the Stokes number, the particle velocities usually
are not single-valued. Since our interest covers the entire range of Stokes number
values, a single-valued particle velocity field thus cannot be assumed. Instead, a
Lagrangian particle tracking approach will be employed in order to examine in some
detail the relevant mechanisms by which the particulate phase affects the nonlinear
time-dependent evolution of the fluid motion. In particular, our interest will focus on
the modifications due to two-way coupling of the well-known particle ejection process
from the vortex cores and the related formation of high-concentration particle streaks
in the braids. One-way-coupled investigations had identified these mechanisms as
crucial ingredients in the dispersion process.

Throughout this investigation, the importance of the vorticity variable, and of the
ways in which it is affected by the two-way coupling, will be emphasized, in order to
develop a vorticity-based interpretation of the two-way coupling mechanisms in free
shear flows. While the present work is limited to two dimensions, the ultimate goal is to
obtain an understanding of how the production and cancellation of vorticity through
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two-way coupling processes affects and alters the convection, diffusion, and stretching
of this variable, i.e. the mechanisms that are known to govern the evolution of single-
phase free shear flows. Employing a vorticity formulation in the investigation of two-
way-coupled two-phase flows presents certain numerical challenges, as will be seen in
detail below. These result mostly from the requirement to obtain spatial derivatives
of the coupling forces, which translates into the need to have a differentiable particle
number density field. To this end, a combined Lagrangian–Eulerian numerical method
will be introduced, the novel features of which will be discussed in detail.

The paper is organized as follows. Section 2 states the equations that govern the
particle distribution function in phase space and, for single-valued particle velocity
fields, the particle concentration in physical space. The relevant dimensionless pa-
rameters are identified, and the two-way coupling between fluid and particles via the
momentum equation is formulated. The two-way-coupled equations for the fluid mo-
tion are given in the vorticity formulation, and the physical mechanisms that lead to
the production and loss of vorticity are discussed. In § 3, the temporal evolution of a
two-way-coupled unidirectional mixing layer flow is addressed. The conditions under
which the particle velocity remains a single-valued function of space are derived. The
resulting equations are solved, the influence of the respective governing parameters is
discussed, and scaling laws are formulated. Subsequently, § 4 describes the combined
Lagrangian-Eulerian approach in some detail. In § 5 results are presented for both
uniformly and differentially loaded two-dimensional two-way-coupled mixing layers,
with and without the effects of gravity. Finally, § 6 will present a brief summary and
draw several conclusions.

2. Governing equations
2.1. Conservation equation for the particulate phase

The present investigation addresses the effects of two-way coupling mechanisms
on time-dependent, viscous flows containing a dilute distribution of small, heavy,
monodisperse, spherical particles or droplets. In the following, we limit ourselves to
situations in which interactions among these particles are negligible and their size
does not change with time due to effects such as, for example, condensation or
evaporation. For an overview over these important effects, the reader is referred to
the review by Sirignano (1993) and the extensive references provided therein. Under
these conditions, the particle distribution function f(x, up, t) in phase space, where up
denotes the particle velocity vector, is governed by the Boltzmann-like spray equation
(Williams 1985)

∂f

∂t
= −∇x · (upf)− ∇up · (apf), (2.1)

where, for two-dimensional flow,

∇x = (∂/∂x, ∂/∂y)T , (2.2a)

∇up = (∂/∂up, ∂/∂vp)
T , (2.2b)

ap =
dup
dt
, (2.2c)

up =
dxp
dt
. (2.2d)
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Here, xp and ap(xp, up, t) denote the particle location and acceleration, respectively.
The particle number density n(x, t) in physical space is related to the distribution
function in phase space by

n(x, t) =

∫ ∞
−∞
f(x, up, t)dup. (2.3)

In a dilute, particle- or droplet-laden flow such as a spray or an aerosol, the particle
acceleration ap can be related to the instantaneous local particle and fluid velocities
by considering the forces acting on an isolated spherical particle, cf. Williams (1985).
For the case of particles that are much smaller than the characteristic length scales
of the velocity field, a corresponding equation of motion, expressing a balance of
these forces, was formulated by Maxey & Riley (1983). The history term contained
in this equation, whose formulation dates back to Basset, has been under some
scrutiny since, see the recent work by Kim, Elghobashi & Sirignano (1998), as well
as references therein. However, our interest focuses on situations in which the density
of the particle material is much greater than that of the fluid. Under such conditions,
the history term becomes negligible, along with the forces due to virtual mass and
pressure gradients, compared to the contribution of the viscous drag and gravity,
cf. the order of magnitude analysis conducted by Lazaro & Lasheras (1989). By
furthermore assuming Stokes flow around the particles, we obtain

ap ≡ dup
dt

=
3πµdp
mp

[u(xp)− up]− gey. (2.4)

This equation expresses the balance of particle inertia, viscous drag, and gravity.
mp represents the particle mass, µ denotes the dynamic fluid viscosity, and dp is the
particle diameter. u(xp) denotes the fluid velocity at the particle location, and g is the
strength of the gravitational acceleration, which points in the −y-direction.

The above equations for the particle distribution function (2.1) and the particle
acceleration (2.4) are rendered dimensionless by introducing characteristic scales for
the value of the distribution function, as well as velocity, length, and particle number
density, respectively:

f∗ = F, u∗ = U, l∗ = L, n∗ = N. (2.5)

For the specific case of a temporally growing, spatially periodic mixing layer to be
considered below, U represents the velocity difference across the shear layer, L denotes
its width at the initial time of the simulation, and N is the nominal particle number
density in the seeded stream. In this way, we obtain for a two-dimensional flow

∂f

∂t
= −∇x · (upf)− 1

St
∇up · [(u− up)f] +

1

Fr2

∂f

∂vp
, (2.6a)

dup
dt

=
1

St
(u− up)− ey

Fr2
, (2.6b)

dxp
dt

= up, (2.6c)

where ey is the unit vector in the y-direction. As the governing parameters, we identify
the Stokes number St and the Froude number Fr:

St =
τp

τf
, Fr =

U√
Lg
. (2.7)
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Here the fluid time scale τf and the particle aerodynamic response time τp are defined
as τf = L/U and τp = d2

pρp/18µ, respectively, where ρp indicates the density of the
particle material. τp can be viewed as a measure of the responsiveness of a particle to
a change in the fluid velocity field, while τf gives an indication of the time available
for the interaction of the particle with the large-scale structures, cf. Chein & Chung
(1988). Fr measures the importance of gravitational forces.

When integrating over the up- and vp-directions of the phase space, the last three
terms on the right-hand side of equation (2.6a) vanish, and the following relationship
for the particle number density results:

∂n

∂t
= −

∫ ∞
−∞
∇x · (upf)dup. (2.8)

In general, the above integrals will have to be evaluated numerically in phase space,
which leads to the costly higher dimensionality of the problem mentioned in the
introduction. However, when up and vp are single-valued functions of the spatial
location x, i.e., up = up(x, t), we obtain∫ ∞

−∞

∫ ∞
−∞

∂

∂x
(upf) dup dvp =

∂

∂x

[
up

∫ ∞
−∞

∫ ∞
−∞
f dup dvp

]
=

∂

∂x
(upn), (2.9a)

∫ ∞
−∞

∫ ∞
−∞

∂

∂y
(vpf) dup dvp =

∂

∂y

[
vp

∫ ∞
−∞

∫ ∞
−∞
f dup dvp

]
=

∂

∂y
(vpn). (2.9b)

As a consequence, the equation for the particle number density takes the form

∂n

∂t
= −∇x · (upn). (2.10)

This demonstrates that a lower-dimensional problem results if the particle velocity
is a single-valued function of space. Below, we will investigate in some detail the
conditions under which the unidirectional base flow of a particle-laden mixing layer
satisfies this prerequisite. In general, however, inertial effects will render the particle
velocity a multi-valued function of space, and numerical simulations will either have to
be based on the higher-dimensional conservation equation for the particle distribution
function in phase space, or on a Lagrangian approach along the lines described below
in § 4.

2.2. Two-way coupling via the momentum equation

Depending on the parameter regime, different approaches to accounting for two-
way coupling effects are most suitable. An overview over these various approaches
is provided by Sinclair (1997), as well as Crowe, Sommerfeld & Tsuji (1998). For
dilute suspensions of particles that are small enough for their inertia to be negligible,
the most convenient model employs a single-phase Boussinesq fluid, whose density
depends on the local particle concentration. The particulate phase can then be
described by a convection–diffusion equation for its concentration, which can also
account for uniform gravitational settling. Such a model has been applied, for example,
by Härtel et al. (1999) in their investigation of particle-driven gravity currents.

If, on the other hand, particle inertia is important, the momentum coupling between
particle and fluid motion can be approximated most straightforwardly by assuming
that each particle locally exerts a force on the fluid that is opposite and equal to
the force experienced by the particle, cf. Williams (1985), as well as the more recent
numerical applications by Squires & Eaton (1990), Elghobashi & Truesdell (1993),
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Maxey et al. (1997), as well as Wallner & Meiburg (1998). In order to determine
the collective force density l with which the particles located in a differential control
volume act on the fluid, one defines the average particle velocity ūp(x, t) in the
differential control volume

ūp =
1

n

∫ ∞
−∞
fup dup. (2.11)

Assuming a Stokes drag force, one thus obtains the dimensional relationship

l = n3πµdp(ūp − u). (2.12)

In focusing on the coupling mechanisms of dilute particle- or droplet-laden flows, we
neglect the volume fraction of the particle phase in the continuity equation for the
fluid. This approximation is valid when investigating, for example, the dynamics of
sprays or aerosols, where for typical mass loadings of O(1) the volume fraction of the
particulate phase is of O(10−3). The mass and momentum equations governing the
constant-density fluid motion thus take the form

∇ · u = 0, (2.13a)

ρ
∂u

∂t
+ ρ(u · ∇)u = −∇p+ µ∇2u+ n3πµdp(ūp − u). (2.13b)

Upon non-dimensionalization, we obtain

∇ · u = 0, (2.14a)

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u+ n

D

St
(ūp − u). (2.14b)

Here the Reynolds number Re and the dimensionless mass loading D, respectively,
are defined as

Re =
UL

ν
, D =

ρ̄p

ρ
, (2.15)

where

ρ̄p = mpN (2.16)

denotes the nominal mass of particle material per unit volume of the flow in the
seeded stream.

As mentioned earlier, the present investigation ultimately aims at understanding
the two-way coupling effects, as well as the related production and loss of vorticity,
in terms of their ability to modify the balance of convection, diffusion, and, in three
dimensions, stretching of vorticity. Formulated differently, our goal is to identify the
routes by which the two-way coupling effects can alter the mechanisms known to
govern the vorticity dynamics of single-phase free shear flows. Regarding the linear
aspects of this issue, Dimas & Kiger (1998) interpret their theoretical stability results
from a vorticity-based point of view. They find that modifications of the vorticity field
are due to the divergence of the particle velocity field. It is instructive to formulate
the conservation equations for the fluid motion in terms of the vorticity variable ω,
cf. Druzhinin (1995b). For the present situation of two-dimensional flows, additional
benefits are realized by employing the streamfunction ψ, which results in

∂ω

∂t
+ (u · ∇)ω =

1

Re
∇2ω +

D

St
∇× [n(ūp − u)] · ez, (2.17a)

∇2ψ = −ω, (2.17b)
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u =
∂ψ

∂y
, (2.17c)

v = −∂ψ
∂x
. (2.17d)

Equation (2.17a) allows us to readily identify the physical mechanisms by which the
particulate phase will affect the evolution of the vorticity field. We recognize that the
presence of the particulate phase manifests itself as a source term, which indicates the
local production or destruction (cancellation) of vorticity. For the specific example
of a mixing layer, the spatio-temporal distribution of this source term will then
determine the extent to which the interplay of vorticity convection and diffusion,
which governs the evolution of the Kelvin–Helmhotlz instability, is modified by
the presence of the particulate phase, and whether these modifications will result
in the amplification or damping of the instability. The magnitude of the source
term depends both on the mass loading as well as on the particle Stokes number.
Spatial variations in the particle number density field in combination with a local
velocity difference (slip velocity) between the two phases are seen to result in the
production or loss of vorticity. Based on the above vorticity equation, it is reasonable
to expect larger mass loadings D to result in stronger two-way coupling effects. On the
other hand, interpreting the influence of St requires more caution, as this parameter
also appears in the particle equation of motion, where it directly affects the slip
velocity.

In order to gain some preliminary insight into the fundamental nature of the
coupling mechanisms, and how they affect the vorticity field, we will first focus on
the evolution of the unperturbed, unidirectional base flow laden with monodisperse
particles, and under the effect of gravity. An investigation along similar lines has
been conducted by Katoshevski & Tambour (1993). However, while these authors
neglect the effect of gravity, they do allow for evaporating, polydisperse droplets. A
comparsion of their theoretical results with the experimental observations of Lazaro
& Lasheras (1989, 1992a, b) for sprays impressively demonstrates the usefulness of
considering such simplified flow models.

3. Temporal evolution of the unidirectional base flow in the absence of
perturbations

Consider the case in which the fluid velocity initially is given by the unidirectional,
horizontal base flow

u(y, t = 0) = (0.5 tanh y, 0)T . (3.1)

Let us furthermore assume that the initial conditions for the particle velocity up
and number density n are independent of x as well. Then, in the absence of two-
dimensional perturbations, we obtain for all times

∂

∂x
(u, up, n) ≡ 0, v(x, t) ≡ 0. (3.2)

Even though the above fluid flow remains strictly unidirectional for all times, a non-
trivial dynamical evolution will develop as a result of the time-dependent coupling
between the fluid and the particle motion, since both the settling of the particles as
well as the viscous diffusion of the streamwise fluid momentum will maintain the
presence of slip velocities. The equations of motion governing this unidirectional,
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two-way-coupled base flow take a particularly simple form if the particle velocity
field remains a single-valued function of space for all times. In the following, we will
establish the conditions for which this is the case.

3.1. Conditions under which the particle velocity field remains a single-valued
function of space for all times

For the above unidirectional flow, it is of interest to establish the conditions under
which a particle velocity field that initially represents a single-valued function of
space will maintain this property for all times. This will be the case if particles that
are released at different initial y-locations yp0, possibly with different initial vertical
velocities vp0(yp0), continue to occupy different y-locations for all times. We can express
the y-location of a particle as a function of its release location and time as h(yp0, t):

h(yp0, t) = yp0 +

∫ t

0

vp(yp0, t)dt, (3.3)

where vp(yp0, t) denotes the Lagrangian, time-dependent vertical velocity of the particle
released at yp0. We thus obtain as condition for single-valuedness

∂h

∂yp0
(yp0, t) > 0. (3.4)

In other words, if particle 2 starts at a higher (lower) y-location than particle 1, its
y-location will have to remain higher (lower) than that of particle 1 for all times. For
vanishing vertical fluid velocity, equation (2.6b) states that vp(yp0, t) is governed by

∂vp

∂t
= − 1

St
vp − 1

Fr2
, (3.5)

which has the solution

vp(yp0, t) =

[
vp0(yp0) +

St

Fr2

]
e−t/St − St

Fr2
. (3.6)

Here St/Fr2 is the dimensionless terminal settling velocity. Substitution of this result
into equation (3.3) yields

∂h

∂yp0
(yp0, t) = 1 +

dvp0
dyp0

St(1− e−t/St). (3.7)

Thus, for dvp0/dyp0 > 0, condition (3.4) is always satisfied. On the other hand, if
dvp0/dyp0 < 0, we must require

dvp0
dyp0

> − 1

St
. (3.8)

This indicates that the rate at which the vertical release velocity of the particles drops
off with y is not allowed to exceed a certain value if the particle velocity is to remain
a single-valued function of y for all times. Furthermore, note that whether or not vp
remains a single-valued function of space it depends neither on the horizontal release
velocity nor on the mass loading. In the following, we will focus on the special case
in which the particles are released everywhere with the local fluid velocity, i.e.

up0(yp0) = u(yp0, t = 0). (3.9)
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3.2. The case of particles being released with the fluid velocity

Since vp stays independent of y for all times, the spray equation (2.6a) now takes the
form

∂f

∂t
= −vp ∂f

∂y
− 1

St

∂

∂up
[(u− up)f] +

1

St

∂

∂vp
(vpf) +

1

Fr2

∂f

∂vp
. (3.10)

By integrating this equation over the up- and vp-directions, a lower-dimensional
differential equation for the particle number concentration n in physical space is thus
obtained as

∂n

∂t
= −vp(t)∂n

∂y
. (3.11)

For the particular initial condition of

n(y, t = 0) = n0, (3.12)

we recognize that the particle number concentration field does not depend on space
or time. As a further consequence of the single-valued nature of the particle velocity
field, we can define a particle vorticity

ωp(y, t) = −∂up
∂y

. (3.13)

The horizontal particle velocity is then governed by

dup
dt

=
∂up

∂t
+ vp

∂up

∂y
(3.14a)

=
∂up

∂t
− vpωp, (3.14b)

where d/dt, as before, denotes the Lagrangian derivative following the particle motion.
For the present case of vp0(y) = 0, we thus obtain with equations (3.6) and (2.6b)

∂up

∂t
+

St

Fr2
(1− e−t/St)ωp =

1

St
(u− up), (3.15)

and, by taking ∂/∂y,

∂ωp

∂t
− St

Fr2
(1− e−t/St)

∂ωp

∂y
=

1

St
(ω − ωp). (3.16)

The evolution of the fluid and particle vorticities is thus described by the relatively
simple system of coupled partial differential equations

∂ω

∂t
=

1

Re

∂ω

∂y2
+
D

St
(ωp − ω), (3.17a)

∂ωp

∂t
=

St

Fr2
(1− e−t/St)

∂ωp

∂y
+

1

St
(ω − ωp), (3.17b)

subject to the initial and boundary conditions

ω(y, 0) = ωp(y, 0) = − 1

2 cosh2(y)
, (3.18a)

ω(y → ±∞, t) = ωp(y → ±∞, t) = 0. (3.18b)
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For this particular flow, the four independent parameters (Re, D, St, and Fr) can be
reduced to three by rescaling time as

t∗ =
t

St
. (3.19)

In this way, we obtain

∂ω

∂t∗
=
St

Re

∂ω

∂y2
+ D(ωp − ω), (3.20a)

∂ωp

∂t∗
=
St2

Fr2
(1− e−t

∗
)
∂ωp

∂y
+ (ω − ωp). (3.20b)

This rescaled problem is thus governed by the three dimensionless parameters

D,
St

Re
,

St2

Fr2
, (3.21)

which can be interpreted as the mass loading factor, a rescaled Reynolds number,
and a rescaled settling velocity.

3.3. Numerical results for the two-way-coupled unidirectional base flow

The above coupled system (3.20a), (3.20b) can be solved numerically in a straightfor-
ward fashion by any of a number of standard methods. In the present investigation,
we opt for a finite difference scheme of Crank–Nicolson type, which is of second
order both in space and in time. The grid spacing ∆y is typically taken to be 0.05.
Since the effective convection velocities and diffusion coefficients in equations (3.20a)
and (3.20b) depend on the values of the governing parameters, the size of the time
step ∆t has to be adjusted accordingly. Along similar lines, computational domains
of different size are employed for different parameter combinations.

In the following, we will separately evaluate the influence of the governing dimen-
sionless parameters D and St2/Fr2 on the spatio-temporal evolution of the fluid and
particle vorticities. Particular emphasis will be placed on the strength of the coupling
between the two phases, as well as on how this coupling affects the rates at which the
two respective vorticity peaks decay and propagate downward. Here, it is important
to realize that the particle settling velocity vp(t

∗) is given by

vp(t
∗) =

St2

Fr2
(e−t

∗ − 1) (3.22)

and does not depend on the spatial location y, on D, or on St/Re.
Furthermore, several globally conserved quantities can be identified. Since far

below and far above the mixing layer, both the fluid and the particle velocities in
the x-direction for all times will asymptotically approach the values of −0.5 and 0.5,
respectively, we have ∫ ∞

−∞
ω(y, t∗)dy =

∫ ∞
−∞
ωp(y, t

∗)dy = −1, (3.23)

i.e. the global fluid and particle circulations are equal and constant in time. At first
glance, this may seem at odds with the fact that the respective production terms in
the equations for ω and ωp, while being of opposite signs, differ by a factor of D in
magnitude. However, this apparent contradiction is resolved by realizing that, in each
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Figure 1. Particle and fluid vorticity and velocity profiles as function of time for D = 0.1,
St2/Fr2 = 1, St/Re = 0.01 and times 0, 40, 80 and 120. The production and cancellation of vorticity
leads to an effective downward migration of the fluid and particle vorticity and velocity profiles.

of the two vorticity equations separately, the integral across the mixing layer over the
production term identically vanishes for all times∫ ∞

−∞
[ωp(y, t

∗)− ω(y, t∗)]dy ≡ 0. (3.24)

3.3.1. Influence of the mass loading parameter D

Inspection of equations (3.20a) and (3.20b) shows that the mass loading factor
D represents the primary parameter responsible for two-way coupling effects, since
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its magnitude determines the strength of the feedback from the particle motion to
the fluid motion. A value of D � 1 might suggest this feedback to be fairly weak,
so that one may expect the fluid motion to evolve in a fashion that is largely
unaffected by the particulate phase. However, the feedback also depends on the
magnitude of the vorticity difference, which will increase with time if the fluid motion
develops independently of the particulate phase. A typical situation for D � 1 is
shown in figure 1, for D = 0.1, St2/Fr2 = 1 and St/Re = 0.01. It is important to
realize that the signs of the respective source terms in the vorticity equations are
such that the settling of the particles leads to a cancellation of the fluid vorticity
on the upper side of the shear layer, while additional fluid vorticity is produced
on its lower side. In this way, the maximum of the fluid vorticity, while decaying
as a result of diffusion, is shifted to lower y-values. It should be emphasized that
this shift is unrelated to any convection of fluid (v(y, t) ≡ 0 everywhere), and due
exclusively to the source term. For the same reason, the maximum of the particle
vorticity is not convected downward along with the settling particles. Instead, the
production and cancellation of particle vorticity due to the coupling with the fluid
motion are distributed such that the particle vorticity maximum remains just below
that of the fluid vorticity for all times. In summary, the respective source terms in
the equations governing the fluid and particle vorticity have the effect of driving
these two quantities towards each other. This effect is balanced by the settling of
the particles, which tends to increase the local difference between the two vorticity
fields.

This coupling of the vorticity fields can clearly be recognized in figure 2, which shows
the values as well as the locations of the two vorticity maxima as a function of time.
Initially, the location of the particle vorticity maximum rapidly propagates downward,
without having much of an effect on the location of the fluid vorticity maximum.
However, as soon as the difference ω − ωp becomes large enough, the coupling gets
stronger, and for long times the two vorticity maxima propagate downward with
identical velocities, in the form of a decaying travelling wave solution.

For D � 1, the situation is somewhat different, cf. figure 3. Here even small
differences ω − ωp quickly drive the fluid vorticity towards the particle vorticity.
Consequently, the coupling term in the particle vorticity equation will remain small
for all times, so that the coupled vorticity profiles propagate downward with a velocity
that is close to the particle settling velocity, cf. figure 4.

By comparing figures 2 and 4, one recognizes that for two-way-coupled flows the
decay rate of the fluid vorticity maximum does not depend only on the diffusive
effects, as expressed by the rescaled Reynolds number Re/St, but also on the mass
loading ratio D. Figure 5 depicts the time evolution for several different D values.
It is quite interesting to note that for D ≈ 1, the coupling between the two phases
is optimal in the sense that the maximum of the fluid vorticity decays much more
rapidly than for either very large or very small values of D.

3.3.2. Influence of the rescaled settling velocity St2/Fr2

For a reduced settling velocity of St2/Fr2 = 0.1, the behaviour is quite similar to
the case St2/Fr2 = 1 described above. However, for St2/Fr2 = 10, a set of different
interesting dynamical features can be observed. At small mass loadings such as
D = 0.1 (figure 6), the rapid settling of the particles leads to an effective decoupling
of the fluid and particle vorticities during the early stages. The maximum of the
particle vorticity is seen to quickly propagate downward without being able to set
up a corresponding propagating front in the fluid vorticity profile. As a result, a
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Figure 2. Value and location of fluid and particle vorticity maxima as a function of time for
D = 0.1, St2/Fr2 = 1, and St/Re = 0.01. The coupled vorticity profiles take the form of a decaying
travelling wave solution.

travelling-wave-type solution, such as the one we had observed for St2/Fr2 = 1, does
not develop until late in the present simulation. Interestingly, however, the evolution
of the particle vorticity field leads to the transient appearance of two local maxima.

Somewhat stronger coupling is observed for D = 1, cf. figure 7. Even though
initially the distance between the particle and fluid vorticity peaks rapidly increases,
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Figure 3. Particle and fluid vorticity and velocity profiles as function of time for D = 10, St2/Fr2 = 1,
St/Re = 0.01 and times 0, 16, 32, 40. At these large mass loading parameters, the differences between
fluid and particle vorticities and velocities remain small.

these peaks eventually decay and new peaks appear (cf. figure 8) that propagate
downward at identical velocities. This indicates that for long times again a travelling
wave solution is established. However, the initial transient behaviour with its strong
non-uniformities in both the particle and the fluid vorticities, and the associated
multiple inflection points in the velocity profile, may be significant as far as the
stability of the flow is concerned, cf. also Chandler (1998). Finally, for D = 10, the
behaviour once again is much more uniform, and the solution exhibits a travelling-
wave-like character from the start, cf. figure 9.
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Figure 4. Value and location of fluid and particle vorticity maxima as a function of time for D = 10,
St2/Fr2 = 1, and St/Re = 0.01. For this large value of D, fluid and particle vorticities closely track
each other.

3.3.3. Scaling argument for asymptotic propagation velocity

The above results indicate that within certain parameter ranges, and for large
times, the evolution of the fluid and particle vorticities exhibits a travelling-wave-like
character. Under these circumstances, an estimate for the rate V at which the coupled
vorticity peaks propagate downward can be obtained from the following momentum
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St/Re = 0.01, and D = 0.1, 0.3, 1, 3, and 10, respectively. The two-way coupling leads to a maximum
rate of decay of the fluid vorticity for intermediate values of the mass loading parameter.

consideration. Since for t∗ � 1 the particles settle with the velocity St2/Fr2, and
since the horizontal particle and fluid velocities far above and below the mixing layer
remain at 0.5 and −0.5, respectively, the particles add u-momentum to the two-way-
coupled mixing layer at a rate proportional to DSt2/Fr2. For long times the fluid and
particle profiles both propagate downward with velocity V , so that in the absence
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Figure 6. Particle and fluid vorticity and velocity profiles as function of time for D = 0.1,
St2/Fr2 = 10, St/Re = 0.01 and times 0, 2, 3, and 5. At these large particle settling velocities,
multiple vorticity peaks associated with multiple inflection points in the velocity profile can appear
transiently.

of diffusive and/or dispersive spreading of the profiles, there is a downward flux of
u-momentum at the rate of (1 +D)V . Balancing these two rates gives an estimate V ∗
for the asymptotic downward propagation velocity of the fluid and particle profiles:

V ∗ =
D

1 + D

St2

Fr2
. (3.25)
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Figure 7. Value and location of fluid and particle vorticity maxima as a function of time for
D = 1, St2/Fr2 = 10, and St/Re = 0.01. A coupled travelling wave solution emerges after an initial
transient phase.

Figure 10 displays V/V ∗ as a function of D for a wide variety of parameter combina-
tions, all of which were observed to eventually lead to travelling wave-type-solutions.
We see that the above scaling argument provides a reasonably good estimate of the
actual propagation velocity. It should be pointed out that the above scaling argument
can only be expected to hold after a traveling-wave-like solution emerges.
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St/Re = 0.01 and times 1.8, 2.2, 2.8 and 3.0. Again, the early stages are characterized by multiple
vorticity peaks.

4. Numerical approach for the two-dimensional problem
In the following, we will focus on the temporal evolution of the above base

flow (3.1) in the presence of two-dimensional, spatially periodic perturbations. Now
even relatively small amounts of particle inertia will render the particle velocity
field a multi-valued function of the spatial coordinates. This can easily be seen by
focusing on the neighbourhood of the free stagnation point that forms midway
between two evolving Kelvin–Helmholtz vortices. Locally, the directional properties
of the streamline pattern in this area will cause the particulate phase to approach
the stagnation point from two opposite directions, cf. the analytical and simulation
results presented in Martin & Meiburg (1994). Even moderate amounts of particle
inertia, i.e. values of St>O(1), will then cause these particles coming from opposite
directions to overshoot the stagnation point area. Consequently, in a small differential
control volume element near the stagnation point, we will find particles moving in
opposite directions, which shows that the particle velocity field is multi-valued. As a
result, conservation equations for the particle distribution function or number density
would now have to be solved in the higher-dimensional phase space, rather than in
physical space. In order to avoid the associated high computational costs, we pursue
a less expensive Lagrangian numerical method for the particulate phase, which is
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Figure 9. Particle and fluid vorticity and velocity profiles as function of time for D = 10,
St2/Fr2 = 10, St/Re = 0.01 and times 0, 1.6, 3.2 and 5.0.

coupled to an Eulerian treatment of the fluid. Its features will be outlined in the
following.

The field equations (2.17a) and (2.17b) for the fluid phase are solved in an Eulerian
fashion, by applying a spectral Fourier series expansion in the streamwise, periodic
direction (Gottlieb & Orszag 1977), and sixth-order compact finite differences in the
transverse direction (Lele 1992). Time advancement is accomplished by means of a
third-order Runge–Kutta method (Wray 1991). An initial perturbation is applied to
the fluid velocity field that has the form of the eigenfunction of the most unstable
mode according to inviscid theory as found by Michalke (1964). Its wavenumber
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parameter range investigated here.

is α = 0.4446, and the length of the computational domain is chosen such that it
accommodates exactly one or two wavelengths, for investigations of fundamental and
subharmonic perturbations, respectively. The value of Re is taken to be 200. Slip
conditions are applied at the upper and lower boundaries of the control volume,
which are placed sufficiently far away from the shear layer to have a negligible
effect on its evolution. The simulations typically employ a discretization of 65 points
per wavelength. The size of the time step strongly depends on the magnitude of
the dimensionless parameters, as they effectively control the range of convection
velocities and diffusive/dispersive effects. At the beginning of the simulation, the
particle velocities are set equal to the local fluid velocity.

Our numerical approach for modelling the particulate phase and its effects on the
fluid motion builds on the physical principles reviewed in Williams (1985), and it is
similar in spirit to the techniques employed by Squires & Eaton (1990), Elghobashi
& Truesdell (1993) and Maxey et al. (1997) in that it tracks individual particles with
inertia in a Lagrangian fashion. However, while those authors focused on the two-way
coupling mechanisms between the particulate phase and a turbulent carrier flow in a
velocity-pressure formulation of the equations governing the fluid motion, our focus
will be on gaining a vorticity-based understanding of the two-way coupling effects by
which the particulate phase affects the fluid motion. Consequently, the simulations
to be discussed in the following will be based on the vorticity formulation (2.17a),
(2.17b) of the fluid equations of motion. Since the vorticity equation for the fluid
(2.17a) involves derivatives of the particle number density field n, care has to be taken
in reconstructing this field at every time level from the Lagrangian information of the
individual particle locations. The numerical approach was first introduced by Wallner
& Meiburg (1998) and is described in detail in the following.

The dispersed particles are tracked in a Lagrangian way, with each of the N
computational particles representing a cluster of physical particles located in the
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same neighbourhood. The number density field n(x, t) is then obtained as

n(x, t) =

N∑
i=1

Γiγi[x− xi(t)]. (4.1)

Here γi represents the generic shape function of the number density distribution
within computational particle i, normalized so that∫

γi(x) dx = 1. (4.2)

In the present investigation, we take γi to be radially symmetric and of Gaussian
shape

γi(r) =
1

πσ2
i

e−r
2/σ2

i , (4.3)

where σi is a measure of the core size of the computational cluster. Γi denotes the
‘strength’ of cluster i, i.e. the overall number of physical particles contained in it.
The numerical advantage of assuming a Gaussian distribution, which is commonly
done in Lagrangian numerical procedures such as vortex methods (e.g. Leonard
1980; Koumoutsakos & Leonard 1995; Meiburg 1995), is that we obtain a smooth,
differentiable particle concentration field. If at time t = 0 the clusters are separated
by a distance ∆ in the x- and y-directions, we obtain

Γi = ∆2 n(xi, 0). (4.4)

In the numerical simulations to be discussed below, all computational clusters initially
are of identical size and strength. Their initial separation ∆ is typically equal to the
grid size of the Eulerian mesh, while their core size σ = 2∆. In this way, there is
sufficient overlap between the particle clusters to ensure a smooth number density
field. A more formal discussion of the accuracy of this approach is currently in
preparation. In order to maintain a well-resolved particle concentration field for long
times, a remeshing procedure for the particles is employed which inserts an additional
cluster if the distance between two initially neighbouring clusters exceeds a certain
value. The strengths Γi of the two original clusters and the new, additional cluster
are then adjusted in order to maintain the overall number of particles in the flow
field. Within the present study, we follow the relatively simple rule that if the original
neighbours had strengths Γ ∗1 and Γ ∗2 before the remeshing, their new strengths are
determined as Γ1 = 3

4
Γ ∗1 and Γ2 = 3

4
Γ ∗2 . The new cluster, which is introduced halfway

between the original ones, and with their average velocity, is given the strength
Γ3 = 1

4
(Γ ∗1 + Γ ∗2 ).

In order to evaluate the instantaneous acceleration of each Lagrangian cluster, the
flow velocity at its location is determined by means of a fourth-order, two-dimensional
Lagrangian interpolation scheme (Martin & Meiburg 1994). The particle velocity is
taken as a weighted average of the cluster velocities. It should be noted that this
approach is valid only for a linear drag law, whereas a more complicated drag law
would require a different averaging procedure. Clusters that leave the control volume
in the horizontal x-direction are reintroduced at the opposite boundary, in accordance
with the periodic boundary conditions in the streamwise direction. For problems in
which the particulate phase is subject to gravitational forces, particle clusters are free to
settle out of the computational domain through the bottom boundary. For long-time
simulations, it may be necessary to continuously add new clusters at the top boundary,
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in order to maintain the nominal particle number density in the upper stream. These
clusters then are seeded with the horizontal fluid velocity and the instantaneous settling
velocity.

An important point concerns the streamfunction boundary conditions at the top and
bottom of the computational domain. For the corresponding single-phase problem,
if the initial conditions and symmetry properties are such that there is no net mass
flux in the horizontal x-direction, one can specify ψ = 0 at these boundaries for all
times. For the two-way-coupled two-phase problem, on the other hand, this boundary
condition will hold only if the initial conditions as well as the dynamical equations
for the particulate phase satisfy corresponding symmetry properties. This will not be
the case if, for example, only one of the two streams is seeded, or if gravity forces
act on the particles. Under such conditions, there can be a net x-momentum transfer
from the particles to the fluid, which will cause an overall acceleration of the fluid
in the streamwise direction. Within our inertial reference frame, this will result in
the generation of a potential component Upot of the fluid velocity in the x-direction,
which can be obtained as

dUpot

dt
=
D

St
s̄x, (4.5)

where s̄x denotes the x-component of the momentum source term, averaged over the
entire flow field.

The numerical approach was validated by applying it to two different test prob-
lems for which the two-way-coupled equations simplify, so that in addition to the
Lagrangian particle-based approach described above, they can also be solved either
analytically, or numerically with standard techniques and very high accuracy for
comparison purposes. Results for these two validation problems were reported in
Wallner & Meiburg (1998). The first of these problems involves a fluid that is initially
at rest everywhere. At t = 0, the entire flow field is seeded uniformly with particles
of unit velocity in the x-direction. The governing equations yield for the x-velocity
components of the fluid and particle velocities, respectively,

u(t) =
D

1 + D
(1− e−[(1+D)/St]t), (4.6a)

up(t) =
1

1 + D
(D + e−[(1+D)/St]t). (4.6b)

A variant of Stokes’ first problem serves as a second, more challenging test case. An
infinite flat plate is impulsively accelerated from rest to a constant velocity in its own
plane. Liu (1966) formulates the equations governing the temporal evolution of the
fluid and particle phases above the plate. In our notation, they are

∂u

∂t
=

1

Re

∂2u

∂y2
+
D

St
(up − u), (4.7a)

∂up

∂t
=

1

St
(u− up). (4.7b)

For both of these test problems, the numerical approach described above was able to
provide very accurate solutions, cf. Wallner & Meiburg (1998).
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Figure 11. St = 1, D = 0.5, Re = 200: concentration and vorticity fields for the two-way-coupled
and the one-way-coupled (passive) case, respectively, at time t = 37.5. The right-hand column shows
the differences between the two flows. In the vorticity contour plots, ∆ gives increments between
contour levels. The vorticity difference is indicated by shading, with dark (light) shading visualizing
an increase (decrease) in the vorticity magnitude due to coupling. The particle number density is
seen to increase in the core, while the vorticity decreases.

5. Results of two-dimensional simulations
5.1. Interplay of particle inertia and vorticity dynamics

5.1.1. Uniform particle loading

In the following, some of the qualitative differences in the vorticity and concen-
tration fields between the one-way coupled and the two-way coupled cases will be
described, at first in the absence of gravitational settling effects. To this end, we will
focus on the case of St = 1, for which the coupling between the two phases is quite
pronounced, as will be seen below. For an initially uniform seeding with particles, and
for a mass loading of D = 0.5, significant differences in the evolution of the mixing
layer at Re = 200 are visible, cf. figure 11. Both in the braids, as well as in the regions
to the immediate left and right of the core, an increase in the magnitude of the vor-
ticity due to the two-way coupling can be observed. In contrast, the vorticity within
the core, and in the regions immediately above and below it, is reduced in magnitude.
Based on the results obtained by Druzhinin (1995b) for the model flow of a Stuart
vortex, and the linear stability analysis by Dimas & Kiger (1998), this behaviour is
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Figure 12. Principal mechanism of vorticity generation in the braid region for a uniformly seeded
flow, due to the misalignment of the particle concentration gradient and the slip velocity. The
isocontours indicate the band of high particle concentration aligned with the extensional direction
of the stagnation point flow field. Maximum particle concentrations are reached near the stagnation
point. The gradient vector ∇n thus points towards the streamline emanating from the stagnation
point. Due to their inertia, the particles do not accelerate away from the stagnation point as quickly
as the fluid, so that the slip velocity up− u points against the direction of the streamline leaving the
stagnation point. The cross-product of these two vectors results in regions of vorticity production
and cancellation, as indicated by ‘−’ and ‘+’, respectively.

in line with expectations. Furthermore, we observe that the braids remain somewhat
thicker under two-way coupling, and that the vortex generally is less circular than in
the passive case.

The particle concentration field is affected by the two-way coupling as well. As
the coupling reduces the core vorticity, the centrifugal forces acting on the particles
become weaker. As a result, for two-way coupling we observe a slight increase in
particle concentration in the core, with a corresponding decrease in the braids. Due
to the less pronounced ejection of particles from the core, the concentration field
appears somewhat compressed in the cross-stream direction, when compared to the
passive case. This behaviour is again consistent with the predictions by the linear
stability analysis of Dimas & Kiger (1998).

A more detailed understanding of the underlying vorticity production and destruc-
tion mechanisms due to particle loading can be obtained by analysing the source term
in the fluid vorticity equation (2.17a). Upon expanding

∇× [n(ūp − u)] = ∇n× (ūp − u) + n(∇× ūp − ∇× u), (5.1)

two potential mechanisms for vorticity generation/loss are identified. The first term
indicates that the vorticity will be altered if the concentration gradient is misaligned
with the direction of the slip velocity. The second term describes the influence of
a difference between the particle and fluid vorticities. The simulations usually show
that in the vicinity of the core, the second term is largest, due to the particles’ inertia.
Keeping in mind that the fluid vorticity is negative everywhere, the source term will
thus be positive in the core, thereby reducing the fluid vorticity. In the braids, on
the other hand, the first term on the right-hand side of equation (5.1) becomes more
significant due to the large variations of the particle concentration field, and the
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Figure 13. The source term in the fluid vorticity equation for a uniformly seeded flow with St = 1,
Re = 200, D = 0.1, and t = 25. Dark (light) shading indicates areas of vorticity production
(cancellation). The postulated quadrupole structure of the source term in the braid region can
clearly be recognized.

relatively weak vorticity. In combination with the local slip velocities, it leads to
both production and destruction of vorticity in the braid region, as shown in the
sketch of figure 12. As both fluid and particles are being accelerated away from the
stagnation point, the slip velocity up − u points towards the stagnation area, due to
the particle inertia. When combined with the local direction of the particle number
density gradient, this feature suggests a quadrupole structure of the vorticity source
term near the stagnation point, which is confirmed by the numerical result shown in
figure 13.

Overall, the vorticity generation and destruction caused by the two-way coupling
is seen to slow the transport of vorticity from the braids into the core region, thereby
weakening the Kelvin–Helmholtz instability mechanism of the fluid phase. In this
context, it should be pointed out that the two-way coupling effectively results only
in the redistribution, but not in any net generation, of fluid vorticity. This can easily
be seen from the fact that the flow field remains periodic in the streamwise direction,
and that far above and below the mixing layer the horizontal fluid velocity maintains
its original value. Consequently, the circulation per wavelength of the mixing layer is
not affected by the two-way coupling. The above numerical findings for the nonlinear
stages of the mixing layer evolution again are in agreement with the inviscid linear
stability analysis of a particle-laden mixing layer conducted by Dimas & Kiger (1998).
These authors find the two-way coupling to have the effect of removing vorticity from
the core and adding it to the braids. Furthermore, some similarities can be found
with observations made by Ruetsch & Meiburg (1994) on two-way coupled mixing
layers with bubbles. Bubbles are seen to have a similar effect in that they reduce the
vorticity in the vortex core.

For a comparatively high Stokes number of 10, a slightly different behaviour is
observed, cf. figure 14. Similarly to the case of intermediate Stokes number, a decrease
in the magnitude of core vorticity is observed. However, these heavier, less responsive
particles form streaks with a smaller angle of inclination in the braids. Furthermore,
now two bands of high particle concentration are found in the braid region, in
agreement with the one-way-coupled analysis presented by Martin & Meiburg (1994).
This behaviour represents a classic example of the multi-valued particle velocity fields
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Figure 14. St = 10, D = 0.5, Re = 200: concentration and vorticity fields for the two-way-coupled
and the one-way-coupled (passive) case, respectively, at time t = 37.5. The right column shows the
differences between the two flows. The braids are thickened by the two-way coupling effects, while
the particle concentration field is compressed in the cross-stream direction. Note the existence of
two bands of high particle concentrations in the braid region, in agreement with the analysis of
Martin & Meiburg (1994).

that exist for even moderately large values of St. Clouds of underdamped particles
approach the stagnation point from opposite directions and overshoot it, so that
particles with opposite velocities coexist near the stagnation point. As they are forced
back by the oncoming flow on the other side of the stagnation point, they form
high-concentration bands. Consequently, the existence of two such bands could not
be captured with numerical simulations based on governing equations that assume
single-valued particle velocity fields.

In the following, the effect of St and D on the nonlinear stages of the mixing
layer growth will be quantified. To this end, we analyse the temporal growth of the
maximum of the streamfunction perturbation for different values of St and D, cf.
figures 15, 16 and 17. As expected on the basis of the above discussion, for intermediate
and high St values the damping effected by the particulate phase increases uniformly
with the mass loading, since the source term in the vorticity transport equation is
proportional to D. This agrees with the linear stability predictions of Dimas & Kiger
(1998), as well as with Yang et al. (1990). For comparable mass loadings, the damping
is more pronounced at larger St values.
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Figure 15. Maximum of the streamfunction perturbation as a function of time for St = 0.1 and
Re = 200 with uniform particle loading. Increased loading slightly destabilizes the mixing layer.
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Figure 16. As figure 15 but for St = 1. Increased loading leads to a more pronounced damping of
the mixing layer perturbation.

For St� 1, increased mass loadings are observed to slightly destabilize the mixing
layer, figure 15. Based on arguments put forward earlier by Saffman (1961), this
behaviour is not unexpected. Saffman reasons that a loading of fine particles with
a St � 1 should be destabilizing, as these particles tend to move with the fluid, so
that their main effect is to increase the effective density of the gas, and thereby the
effective Reynolds number. In contrast, for St� 1, he demonstrates that the term due
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Figure 17. As figure 15 but for St = 10. The damping is seen to be even more pronounced than
for St = 1.

to coupling appears as an additional frictional force in the fluid momentum equation,
which dissipates kinetic energy and thereby stabilizes the flow. We remark that the
linear stability analysis by Dimas & Kiger (1998) addresses inviscid dynamics, so that
an effective increase in the Reynolds number cannot be captured. For all of the above
considerations, it should be noted that we are comparing the growth of perturbations
of equal wavenumbers, rather than the wavenumbers of maximum amplification,
which can change with particle loading. However, Yang et al. (1990) show that this
wavenumber depends only weakly on D.

It is also instructive to evaluate the influence of St on the flow for constant values
of D, cf. figure 18. For St � 1, there is a slight amplification compared to the
single-phase flow. With growing St, the particulate phase increasingly dampens the
Kelvin–Helmholtz instability. Then, as a critical range of St ≈ 5− 8 is exceeded, the
damping weakens again. This confirms our earlier suspicion that the influence of St
cannot be predicted as easily as that of D, since the St value influences both the
particle response as well as the source term in the vorticity equation. Since an increase
in St for a given value of D corresponds to reducing the number of particles while
increasing their size, the implication is that the competition between the effects of
particle number and size, respectively, depends on St.

5.1.2. Differential particle loading

Here the focus will be on the case where only one of the streams that make up the
mixing layer is seeded with particles. Again, the initial particle velocity is equal to the
fluid velocity at the particle location. Now, the flow field contains a region of strong
particle number density gradients from the beginning, so that we expect to see an
effect of the particulate phase on the fluid vorticity from the start. This is in contrast
to the uniformly seeded flow without gravity analyzed above, where such gradients
only evolved with time as particles accumulated in some regions, while being ejected
from others.
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Figure 18. Maximum of the streamfunction perturbation as a function of time for D = 0.5,
Re = 200 and various St values. Up to St ≈ 5–8, the damping effect increases with St. For even
larger St, the damping effect is reduced again. Note that the curves for St = 5 and St = 8 are
almost on top of each other.

The principal effects of two-way coupling on the vorticity and particle concentra-
tions for differential loading can be seen in figure 19, which shows the case of St = 1,
D = 0.5, and Re = 200 at time t = 37.5. The symmetry properties of the uniformly
seeded flow are no longer preserved, and instead the spatial distribution of the vortic-
ity source term results in a net shift of the Kelvin–Helmholtz vortex in the direction
of the seeded stream. The net momentum transferred to the fluid by the particulate
phase can thus be seen to render the Kelvin–Helmholtz instability dispersive. This
agrees with the linear stability findings of Wen & Evans (1994) for an inviscid mixing
layer. It should be emphasized that the net motion of the concentrated vorticity
region is not so much a convection effect as it is caused by the spatial gradients in the
production and destruction of vorticity. In the braid region, the quadrupole nature of
the vorticity source term observed for uniform particle loading is replaced by a dipole
distribution for the case of differential particle loading, cf. the sketch in figure 20 and
the simulation result in figure 21. This results in a strengthening of the upstream half
of the braid, which is located in the initially unseeded stream, while the downstream
half, located in the seeded stream, is depleted of vorticity, so that the vortex core
appears to be ‘cut off’ from its braid.

For uniformly seeded mixing layers, two-way coupling effects had been fairly weak
if St� 1. This is no longer the case if only one of the streams is seeded, cf. figure 22.
The strong local gradients in the particle number density field result in the generation
of a considerable amount of vorticity, even for small slip velocities. Consequently, the
vorticity magnitude can be seen to increase substantially in parts of the vortex core.
For larger St values, on the other hand, the situation is somewhat different, cf. figure
23. Due to the slower response of the particles, the interface does not roll up as much
as for lower Stokes numbers. As a result, a thickening of the braid region is observed,
rather than the ‘cut off’ seen for smaller St.
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Figure 19. St = 1, D = 0.5, Re = 200: initially, only the upper stream is seeded with particles. Shown
are the concentration and vorticity fields for the two-way-coupled and the one-way-coupled (passive)
case, respectively, at time t = 37.5. The right-hand column shows the differences between the two
flows. The asymmetric nature of the vorticity source term distribution leads to a net displacement
of the Kelvin–Helmholtz vortex in the direction of the seeded stream. While the vorticity intensifies
in the braid segment located in the unseeded stream, it is approximately cancelled where the braid
reaches into the seeded stream.

Some similarities can be observed between the present case of a differentially
loaded mixing layer and that of a density-stratified shear layer, cf. the investigation by
Lawrence et al. (1991). For stably stratified shear layers at small Richardson numbers,
these authors experimentally observe structures similar to Kelvin–Helmholtz billows
in the homogeneous case, except for a stronger asymmetry of the flow. This resembles
our findings for St = 0.1, which indicates that the particle loading in the present
problem can play a role similar to that of the stratification in single-phase flows.
The above authors also conduct a linear stability analysis of the inviscid, stratified
shear layer. If the inflection points of the velocity and density profiles, respectively,
are displaced from each other, they observe the occurrence of two unstable modes
travelling in opposite directions. This finding is again relevant to the present particle-
laden flow, as gravitational settling can lead to an offset between the inflection points
in the velocity and concentration profiles.

Further details regarding the above flows, along with additional quantitative infor-
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Figure 20. Principal mechanism of vorticity generation in the braid region for a differentially
seeded flow, due to the interaction between the particle concentration gradient and the slip velocity.
Regions of vorticity production and cancellation are indicated by ‘−’ and ‘+’, respectively.

5

0

–5

–5 0 5

(×10–3)

4

2

0

–2

–4

Figure 21. The source term in the fluid vorticity equation for a differentially seeded flow with
St = 1, Re = 200, D = 0.1, and t = 25. Dark (light) shading indicates areas of vorticity production
(cancellation). In contrast to the uniformly seeded flow, the source term now has a dipole structure
in the braid region.

mation on such global diagnostic measures as the displacement thickness (Martin &
Meiburg 1994), can be found in Wallner (1998).

5.1.3. Subharmonic perturbations and vortex pairing

Winant & Browand (1974) observed vortex pairing to be the dominant mechanism
responsible for the growth of mixing layers. In the present simulations, such a vortex
pairing event was triggered by adding to the initial basic perturbation a subharmonic
one of equal amplitude and appropriate phase. Keeping in mind the above results for
fundamental perturbations, as well as the one-way-coupled vortex pairing results of
Martin & Meiburg (1994) and the experimental observations of Kiger & Lasheras
(1995), figure 24 does not reveal any major surprises regarding the two-way-coupled
evolution of vortex pairing events. Damping of the fundamental perturbation leads to
decreasing vorticity magnitudes in the cores of the pairing vortices, while the vorticity
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Figure 22. St = 0.1, D = 0.5, Re = 200: concentration and vorticity fields for the differentially
seeded flow. Shown are the two-way-coupled and the one-way-coupled (passive) case, respectively,
at time t = 37.5. The right-hand column shows the differences between the two flows. In contrast
to uniformly seeded flows, two-way coupling effects are strong even for small values of St.

in the braids shows a slight increase. The strong strain in between pairing vortices
rapidly depletes this area of particles, while the braid connecting pairs of vortices
maintains a high particle concentration. Overall, the nature of the pairing mechanism
does not seem to be strongly affected by the particulate phase for the present
parameter combination. A similar conclusion holds for the case of a differentially
loaded, subharmonically growing mixing layer. More detailed information on this
case is provided by Wallner (1998).

5.2. Gravitational settling and vorticity dynamics

Inspection of equation (2.17a) shows that gravity does not directly enter the conser-
vation equation for the vorticity. Rather, there are two ways in which gravitational
forces affect the vorticity production term indirectly. First, by causing the particles
to settle through the fluid, gravity tends to convectively modify the gradient field of
the particle number density, thereby altering the locations of vorticity production and
cancellation. Secondly, the gravitational acceleration of the particles affects their slip
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Figure 23. St = 10, D = 0.5, Re = 200: concentration and vorticity fields for the differentially
seeded flow at time t = 37.5. At these larger St values, the braid is thickened by the two-way
coupling effects rather than ‘cut off’, as was the case for smaller St.

velocity, which again affects the vorticity source term. Here these two mechanisms
will be briefly discussed for uniformly seeded particle-laden mixing layers.

The case of St = Fr = 3, D = 0.1, and Re = 200 is well suited for demonstrating
the qualitative changes caused by the two-way coupling. Figure 25 shows that two-
way coupling results in a global shift of the vorticity field in both the +x- and the
−y-directions. This is effected by the vorticity source term, which tends to cancel
the vorticity on the upper side of the mixing layer, while amplifying it on the lower
side, cf. figure 26. A similar trend is seen in the corresponding particle concentration
field, cf. figure 27. This downward shift of the vorticity by means of production
and cancellation on alternating sides is similar in principle to our findings for the
unidirectional base flow in § 3.

In order to find the effective velocity at which the above horizontal and vertical
shifts occur, we evaluate the distance by which the two-way coupled vorticity field
would have to be displaced in the x- and y-directions in order to be optimally
correlated with the one-way coupled field. This approach is similar in spirit to the
well-established experimental technique of digital particle image velocimetry (DPIV,
e.g. Fincham & Spedding 1997). In this way, we obtain data sets such as the ones
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Figure 24. St = 1, D = 0.5, Re = 200: uniformly seeded flow with vortex pairing at time t = 50.
Shown are the concentration and vorticity fields for the two-way-coupled and the one-way-coupled
(passive) case, respectively. The damping caused by the particulate phase leads to a certain slowdown
of the vortex pairing process, without significantly modifying its fundamental dynamics.

shown in figure 28, where the length of the error bars indicates the resolution of
the computational grid. These figures, as well as many others for different parameter
combinations, suggest that after an initial transient the vortical structure assumes
nearly constant velocities in the horizontal and vertical directions, which can be
estimated from least-squares fits of the displacement data.

Our investigation of the two-way coupled, unidirectional base flow in § 3 sug-
gested that over a wide range of parameters the long-time asymptotic effective
downward propagation velocity of the fluid and particle velocity profiles scale with
D/(1 + D)(St2/Fr2). Figure 29 compares the two-dimensional simulation results with
this scaling law. It is seen that for the present, limited parameter range the agreement
is quite good.

6. Summary and conclusions
The present investigation aims at developing a vorticity-based understanding of

the two-way coupling effects in dilute particle- or droplet-laden mixing layers, with
and without particle settling. Some fundamental insight is gained by analysing a
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Figure 25. St = 3, Fr = 3, D = 0.1, Re = 200: uniformly seeded flow at time t = 37.5. Shown are
the respective vorticity fields for one-way and two-way coupling. The two-way coupling results in a
net horizontal displacement of the large scale vortical structure in the direction of the upper stream.
At the same time, it is shifted downward in the direction of the gravitational acceleration.
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Figure 26. The source term in the fluid vorticity equation for the uniformly seeded flow of figure
25. Light (dark) shading indicates areas of vorticity production (cancellation).

unidirectional mixing layer type base flow. For this model flow, a set of conditions
can be established that renders the particle velocity field a single-valued function
of space for all times. Under these conditions, a simplified set of two-way-coupled
equations governing the vorticity of the fluid and particulate phases, respectively, is
derived. The two-way coupling shows up in the form of source terms in these two
vorticity equations. Numerical solutions of these equations demonstrate the formation
of a decaying travelling wave solution over a wide range of parameters. Interestingly,
the downward propagation of the fluid vorticity field is not accomplished through
convection, but rather by the production and loss of vorticity on opposite sides of the
mixing layer. The particle vorticity field evolves through the interaction of convection
effects, caused by the settling motion, with the production and loss of vorticity. The
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Figure 27. Particle concentration field for the flow shown in figure 25. The coupling effects are
seen to result in a more rapid settling of the particles.
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Figure 28. Displacement of the large-scale vortical structure in the horizontal and vertical directions,
as evaluated from correlation data for St = 3, Fr = 3, D = 0.5. The error bars result from the
resolution of the numerical grid. The straight lines represent least-squares fits of the data for t > 18.

numerical simulations furthermore reveal that for moderate settling velocities there
exists an optimal coupling between the fluid and particle vorticity for intermediate
values of the mass loading parameter, in the sense that the fluid vorticity maximum
decays at the fastest rate. Interesting coupled dynamics are also observed for large
settling velocities and intermediate mass loadings. Here, the transient evolution can
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Figure 29. Comparison of the two-dimensional simulation results for the downward propagation
velocity of the fluid vorticity field for St = 3 with the scaling law derived in § 3. Here my indicates
the rate at which the vertical position of the vortical structure changes with time. For the limited
parameter range investigated here, reasonably good agreement is obtained.

produce vorticity profiles that exhibit more than one local maximum, resulting in
multiple inflection points of the fluid velocity profile, which may have repercussions
for the stability properties of the base flow. Based on the observation of a travelling-
wave-type solution, downward flux arguments for the streamwise momentum can be
employed to derive a scaling law for the propagation rates of the vorticity maxima.

For two- or three-dimensional particle-laden flow fields, the particle velocity in gen-
eral will not be a single-valued function of space. However, frequently this assumption
is made when establishing continuum-based Eulerian formulations of multiphase flow
problems, in order to obtain less expensive computational problems. Within the
present investigation, we have developed a mixed Lagrangian–Eulerian approach for
two-way-coupled two-phase flows which is not subject to this limitation. It is similar
in spirit to methods developed by Eaton, Elghobashi, Maxey and their respective
coworkers; however, it is based on the vorticity variable rather than velocity and
pressure. For uniformly loaded mixing layers, nonlinear simulations based on this
method confirm some of the features observed by Druzhinin (1995b) for the model
problem of a two-way-coupled particle-laden Stuart vortex, as well as by Dimas &
Kiger (1998) in their linear stability analysis. In particular, for moderate and large
values of the Stokes number the transport of vorticity from the braids into the core
is seen to be slowed by the two-way coupling effects. As a result, the particle ejection
from the vortex cores is weakened somewhat as well. For moderately large values of
St, we also observe the formation of two bands of high particle concentration in the
braids, an effect that clearly indicates the multi-valued nature of the particle velocity
field, cf. also the one-way coupled analysis by Martin & Meiburg (1994). Interesting
effects are observed for differentially seeded mixing layers, in which initially only one
of the streams carries particles. Here the particle concentration gradient across the
mixing layer leads to strong vorticity production and loss from the start, which results
in an effective net motion of the vortex in the flow direction of the seeded stream.

If there is an appreciable settling velocity of the particles, the vortex propagates
downward as well. By evaluating correlations of the vorticity fields at different
times, an effective settling velocity of the vortex could be determined, which for the
present range of parameters agrees well with the scaling law derived on the basis of
unidirectional flow.

The present investigation has addressed only two-dimensional two-way coupling
mechanisms between the two phases, i.e. the effect of the suspended phase on the
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convection and diffusion of the carrier-phase vorticity. For the evolution of fully
three-dimensional two-phase flows, an important aspect will be the influence of the
particulate phase on the vortex stretching mechanism. One-way-coupled simulations
(Marcu et al. 1995, 1996; Marcu & Meiburg 1996a, b) have already demonstrated that
entirely new particle dynamics appear in three dimensions. For example, heavy parti-
cles can be stably located inside stretched vortices. The implications of these findings
for two-way coupled three-dimensional flows are currently under investigation.
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